Chapter Review Problems

Tip: After doing a problem in "begin" mode, don't forget to switch your calculator back to "end" mode.

Unit 10.1: Finding future value

1. Tammy Brown is 31 and deposits \$2,000 at the end of each year into an individual retirement account (IRA). If the account earns 11% compounded annually, how much will Tammy have when she retires 34 years later?

Ν	i	PV	PMT	FV
34	11		-2,000	613,674.87

2. Jack Green spends \$135 a month on cigarettes and is considering the advantages of kicking the habit. If Jack just turned 19 and deposits the \$135 at the end of each month into a savings plan earning 8% compounded monthly, how much will he have in his savings plan at age 70, after his final deposit?

Ν	i	PV	PMT	FV
51 × 12 = 612	8 ÷ 12 ≈ 0.67		-135	1,161,338.43

3. You deposit \$500 today into a savings plan and deposit an additional \$100 each quarter (starting in 3 months) for 35 years. If you earn 5.5% compounded quarterly, what will your balance be in 35 years?

Ν	i	PV	PMT	FV
35 × 4 = 140	5.5 ÷ 4 ≈ 1.38	-500	-100	45,316.26

4. 170 years ago, your great-great-great-great grandfather lost \$42 playing poker at a fur-trading post in Wyoming. If he had not been tempted to get into the poker game and instead had deposited the \$42 in a savings account earning 4% compounded annually, how much would be in the account today?

Ν	i	PV	PMT	FV
170	4	-42		33,030.64

5. Calculate the account balance for \$500 left on deposit for 267 days earning 5.25% compounded daily.

Ν	i	PV	PMT	FV
267	5.25 ÷ 365 ≈ 0.01	-500		519.57

6. Jed Redmond just turned 22. He decides to empty the change out of his pocket each day—averaging a dollar a day—and set it aside. Then, at the end of each year, Jed will deposit the money in a savings plan earning 7.75% compounded annually. How much will Jed have when he turns 65, after his final deposit?

Ν	i	PV	PMT	FV
43	7.75		-365	111,953.59

7. The average growth rate for stocks over the last 75 years is reported to be about 11%, compounded annually. If your grandmother had invested \$500 in the stock market 75 years ago and received the 11% return, what would her investment be worth today?

N	i	PV	PMT	FV
75	11	-500		1,253,699.39

8. Refer to a business magazine article, shown to the right. Assuming that interest is compounded monthly and deposits are made at the end of each month, calculate the *precise* savings plan balance you will have at ages 35, 45, 55, and 65.

N	i	PV	PMT	FV
$10 \times 12 = 120$	7 ÷ 12 ≈ 0.58		-100	17,308.48
20 × 12 = 240	^		1	52,092.67
30 × 12 = 360	1		1	121,997.10
40 × 12 = 480	↑		1	262,481.34

Unit 10.2 Sinking funds

Problems 9–11 deal with a promise Beth received from her Uncle Ted. He promises to give her \$50,000 on her 30th birthday, $6\frac{1}{2}$ years from now. Uncle Ted can earn 8.5% compounded quarterly on his money.

9. What amount could Uncle Ted deposit today in a savings plan so that the plan would have the required \$50,000 in $6\frac{1}{2}$ years?

N	i	PV	PMT	FV
6.5 × 4 = 26	8.5 ÷ 4 ≈ 2.13	-28,942.51		50,000

10. If, instead, Uncle Ted elects to make quarterly deposits into the plan (starting in 3 months), what is the required quarterly deposit?

N	i	PV	PMT	FV
1	1	0	-1,460.36	1

11. If, instead, Uncle Ted elects to deposit \$10,000 today, what additional quarterly deposit is required?

N	i	PV	PMT	FV
1	1	-10,000	-955.78	1

12. Kristi just turned 28 and can save \$180 per month, starting in 1 month. If Kristi can earn 8% compounded monthly, what age will she be when she accumulates \$1,000,000?

N	i	PV	PMT	FV
547.60 months	8 ÷ 12 ≈ 0.67		-180	1,000,000
Kristi's age now Years left to accumulate \$1,000,000: 547.60 months ÷ 12			28.00 + <u>45.63</u>	

- Kristi's age when she has \$1,000,00073.63(73 years old)13. While your dentist is filling a cavity in one of your teeth, he is talking with his dental assistant about the new dental
- 13. While your dentist is filling a cavity in one of your teeth, he is taiking with his dental assistant about the new dental equipment he wants to buy in $2\frac{1}{2}$ years for \$35,000. He wonders how much he will need to set aside at the end of each month to accumulate the \$35,000. You get his attention and tell him that if he will quit drilling for a minute you will calculate the amount for him. What is the amount, assuming he can earn 11% compounded monthly?

N	i	PV	PMT	FV
2.5 × 12 = 30	11 ÷ 12 ≈ 0.92		-1,018.90	35,000

14. You want to start a retail clothing business and estimate it will take \$15,000 to get started. If you can save \$250 each month, starting today, and your savings will earn 8% compounded monthly, in how many months can you start your business?

Ν	i	PV	PMT	FV
50.35 months	8 ÷ 12 ≈ 0.67		-250 Begin*	15,000

**Note*: Don't forget to put back in "end" mode.

For Problems 15–17, help an auto manufacturer make some calculations on some bonds. The company issues \$86,500,000 of 10.5% 20-year bonds to upgrade its assembly line. Terms of the bond require annual interest payments to bondholders plus annual deposits to a sinking fund for retirement of the bonds when they mature.

15. How much interest must the corporation pay to the bondholders each year?

I = *PRT* = \$86,500,000 × 10.5% × 1 = **\$9,082,500**

16. Assuming the corporation can earn 11.5% compounded annually on its sinking fund, how much must it deposit into the fund at the end of each year?

Ν	i	PV	PMT	FV
20	11.5		-1,271,963.81	86,500,000

17. What is the total amount the corporation needs each year to meet its obligations on the bonds?

Annual interest payments	\$ 9,082,500.00
Annual sinking fund deposit	<u>+ 1,271,963.81</u>
Total needed each year	\$10,354,463.81

Unit 10.3 Annuities

For Problems 18–21, pretend you receive an inheritance of \$500,000 and deposit it in a savings account that earns 6.75% compounded monthly.

18. If you want to live off the interest without withdrawing any of the principal, what amount can you withdraw each month?

 $I = PRT = $500,000 \times 6.75\% \times \frac{1}{12} = $2,812.50$

19. If you withdraw \$2,500 at the end of each month, what will the balance be in 25 years?

Ν	N i		PMT	FV
25 × 12 = 300	6.75 ÷ 12 ≈ 0.56	-500,000	2,500	743,358.22

20. If you withdraw \$3,500 at the end of each month, how long before the balance is exhausted?

N	i	PV	PMT	FV
290.14 ÷ 12 ≈ 24.18 yrs	Ŷ	ſ	3,500	0

21. If you want the plan to last 35 years, how much can you withdraw at the end of each month?

N	i	PV	PMT	FV
35 × 12 = 420	1	1	3,107.08	0

22. A wealthy citizen sets up a trust for scholarships at a local community college. The gift is for \$1,000,000, and the money is distributed at the beginning of each year over the next 200 years. If the trust earns 7.5% compounded annually, how much is available for scholarships each year?

Ν	i	PV	PMT	FV
200	7.5	-1,000,000	69,767.48 Begin*	0

**Note*: Don't forget to put back in "end" mode.

Unit 10.4 Rate considerations

23. Refer to the advertisement shown below. Confirm the annual yield (APY). Use an arbitrary \$100 deposit.

24. Refer to the advertisement shown below. Confirm the annual yield (APY).

23.	N	i	PV	PMT	FV
	2	5.75 ÷ 2 ≈ 2.88	-100		105.83
	1	5.83	↑		1

24.	N	i	PV	PMT	FV
	365	4.55 ÷ 365≈ 0.01	-100		104.65
	1	4.65	1		1

25. One way of measuring inflation is through the use of the consumer price index (CPI), which tracks the cost of a "basket of goods" (food, housing, medical care, fuel, etc.). The base year of the current index is 1983, when the basket of goods cost \$100. The CPI was 9.9 in 1913 (meaning the same basket of goods cost \$9.90), 29.6 in 1960, and 170.8 in the year 2000. Calculate the average annual rate of inflation for the following periods: (a) 1913 to 1960, (b) 1960 to 1983, (c) 1983 to 2000, and (d) 1913 to 2000.

N	i	PV	PMT	FV
47	2.36	-9.9		29.6
23	5.44	-29.6		100
17	3.20	-100		170.8
87	3.33	-9.9		1

26. Your annual salary 12 years ago was \$15,600; it is now \$23,000. If the inflation rate over the last 12 years has averaged 3.5% per year, has your salary kept up with inflation?

N	i	PV	PMT	FV
12	3.29	-15,600		23,000

No; your salary has increased 3.29% per year, which is less than the average annual inflation rate.

27. Tuition at a local college is currently \$2,550 per year. You want your newborn daughter to attend when she turns 18. If tuition rates are expected to increase at an annual rate of 4.5%, what will the annual tuition be at the college 18 years from now?

N	i	PV	PMT	FV
18	4.5	-2,550		5,631.62

Challenge problems

28. The elephant population in a certain region is decreasing 5% per year. If there are currently 3,200 elephants in the region, what is the projected elephant population 20 years from now?

N	i	PV	PMT	FV
20	-5	-3,200		1,147 elephants

29. A few prices for the years 1943 and 2000 are shown. Which item has the greatest average annual rate of increase?

Item	1943	2000		
Gallon milk	\$0.62	\$2.89		
New auto (average)	\$900	\$17,500		
New home	\$3,600 \$3	142,000		
Household income	\$2,041 \$	\$35,500		
N	1	PV	PMT	FV
57	2.74	-0.62		2.89
1	5.34	-900		17,500
1	6.66	-3,600		142,000
1	5.14	-2,041		35,500

For Problems 30–33, consider Social Security and Medicare payroll deductions. As of the writing of this text, the federal government requires employees to pay tax of 7.65% on the first \$80,400 earned each year plus 1.45% of the remainder. Employers must contribute a matching amount. Assume that an employee earns \$45,000 each year during a 40-year working career.

30. Based on these rates, what is the amount withheld from the employee's pay each year?

\$45,000 × 7.65% = **\$3,442.50**

31. What is the total amount contributed by the employee and employer to the fund each year?

\$3,442.50 (employee share) + \$3,442.50 (employer share) = **\$6,885.00**

- **32.** The money is remitted to the government quarterly. What is the quarterly deposit? $$6,885 \div 4 = $1,721.25$
- **33.** Assuming that the deposits were made to a savings plan at the end of each quarter (instead of with the IRS), earning 7% compounded quarterly, how much would the employee have in the savings plan at the end of a 40-year working career?

Ν	i	PV	PMT	FV
40 × 4 = 160	7 ÷ 4 = 1.75		-1,721.25	1,480,390.69

34. You win a contest in which you have the choice of receiving \$25,000 today or receiving \$3,500 a year (starting today) for 10 years. If you can earn 7.5% compounded annually, which choice should you make, and why?

N	i	PV	PMT	FV
10	7.5	-25,000	0	51,525.79
↑	1	0	-3,500 Begin*	53,228.42

*Note: Don't forget to put back in "end" mode.

Take \$3,500 per year. \$25,000 today would grow to \$51,525.79 in 10 years, while \$3,500 per year (starting today) would grow to \$53,228.42.

35. At the end of each month for 3 years, you deposit \$200 into a savings plan. You then make no further deposits but leave the money in the plan for another 5 years. If the plan earns 8.5% compounded monthly, what will the balance be at the end of the 8-year period?

N	i	PV	PMT	FV
3 × 12 = 36	8.5 ÷ 12 ≈ 0.71		-200	8,168.53
5 × 12 = 60	1	-8,168.53	0	12,475.80

For Problems 36 and 37, consider a savings plan for your retirement. You can earn 6.5% compounded monthly.

36. You plan on retiring in exactly 32 years and want to be able to withdraw \$2,500 at the end of each month during 20 years of retirement. What amount must be on deposit at the beginning of the 20-year retirement period in order to withdraw \$2,500 each month for 20 years?

N	i	PV	PMT	FV
20 × 12 = 240	6.5 ÷ 12 ≈ 0.54	-335,312.51	2,500	0

37. How much must you deposit at the end of each month for the next 32 years to accumulate the required sum of Problem 36?

N	i	PV	PMT	FV
32 × 12 = 384	1	0	-260.97	335,312.51

38. If gasoline prices have increased over the past 30 years from 25.9 cents per gallon to \$1.599 per gallon, what is the average annual rate of increase?

N	i	PV	PMT	FV
30	6.26	-0.259*		1.599

* Note: 25.9 cents, written in terms of dollars, is \$0.259

39. The Dow Jones Industrial Average (DJIA) is an index that monitors changes in the stock market. On April 13, 1920, the DJIA was 104.61; on April 13, 1960, the DJIA was 626.50; and on April 13, 2000, the DJIA was 10,923.55. Calculate the average annual increase in the index from (a) April 13, 1920, to April 13, 1960; (b) April 13, 1960, to April 13, 2000; and (c) April 13, 1920, to April 13, 2000.

N	i	PV	PMT	FV
40	4.58	-104.61		626.50
1	7.41	-626.50		10,923.55
80	5.98	-104.61		1

40. You are thinking about buying one of two bonds. The first pays 8.35% compounded semiannually; the second pays 8.5% compounded annually. Which provides the greater return?

The second bond pays 8.5% compounded annually, resulting in an APY of the same 8.5%. Let's find the APY for the first bond, using an arbitrary \$100 investment:

Ν	i	PV	PMT	FV
2	8.35 ÷ 2 ≈ 4.18	-100		108.52
1	8.52	1		1

The APY for the first bond is 8.52%, greater than the 8.5% provided by the second bond.

41. Refer to the news article below. What interest rate must the annuity earn? Assume that the \$25,000 payments are received at the beginning of each year.

*Note: Don't forget to put back in "end" mode.

42. Refer to the advertisement. Confirm the APY. Use an initial \$500 deposit.

N	i	PV	PMT	FV
4	6 ÷ 4 = 1.50	-500		530.68
4	7 ÷ 4 = 1.75	-530.68		568.82*
4	8 ÷ 4 = 2	-568.82		615.70
3 × 1 = 3	7.19	-500		1

*Note: Assume that the unrounded year 1 ending balance (530.6817753 internal value) is transferred into the PV register as a negative value; if the rounded value (530.68) is entered in the PV register, the ending balance is slightly different (568.81). The same procedure should be used for year 3 (transfer the year 2 ending balance into PV as a negative value for year 3).

Practice Test

1. You find an old savings account passbook in your attic. The last balance shown is \$576.82 as of 55 years ago. Calculate the current balance if the bank has been paying 4.75% compounded annually.

Ν	i	PV	PMT	FV
55	4.75	-576.82*		7,404.78

*Note: We can enter the PV value as positive or negative. In this solution, the amount (\$576.82) is thought of as being deposited and, therefore, is entered as a negative value. **2.** You deposit \$200 today into a savings plan and deposit an additional \$25 each month (starting in 1 month) for 22 years. If you earn 6.5% compounded monthly, what will your balance be in 22 years?

N	i	PV	PMT	FV
22 × 12 = 264	6.5 ÷ 12 ≈ 0.54	-200	-25	15,429.16

3. You want to accumulate \$100,000 in 18 years for your child's education, and you can earn 7.75% compounded monthly. What amount must you deposit each month if the first of your 216 deposits is made today?

N	i	PV	PMT	FV
18 × 12 = 216	7.75 ÷ 12 ≈ 0.65		-212.70 Begin	100,000

4. Ben just turned 22. He wants to accumulate \$1,000,000. Ben starts a savings plan by depositing \$2,500. He then makes additional deposits of \$400 at the end of each quarter. If Ben's savings plan earns interest at 8% compounded quarterly, what age will Ben be when he has accumulated the \$1,000,000?

N	i	PV	PMT	FV
192.60 quarters	8 ÷ 4 = 2	-2,500	-400	1,000,000
Ben's age now		22.00		
Years left to accumu	late \$1,000,000: 1	+ <u>48.15</u>		
Ben's age when he h	nas \$1,000,000	70.15	(70 years old)	

5. Your uncle dies and your 62-year old aunt receives \$250,000 life insurance proceeds. She needs monthly income and expects to live until she is 90 years old. If she invests the insurance money, earning 7.75% compounded monthly, how much can she withdraw at the end of each month for the next 28 years?

N	i	PV	PMT	FV
28 × 12 = 336	7.75 ÷ 12 ≈ 0.65	-250,000	1,824.34	0

6. Mitch Swanson wins \$100,000 on a game show. If he deposits the money in a savings plan earning 7.5% compounded monthly and makes withdrawals of \$1,000 at the end of each month, how long can Mitch make withdrawals until the plan is exhausted?

N	i	PV	PMT	FV
157.42 months	7.5 ÷ 12 ≈ 0.63	-100,000	1,000	0

7. What is the APY (to the nearest hundredth of a percent) for 6% compounded quarterly?

N	i	PV	PMT	FV
4	6 ÷ 4 = 1.5	-100		106.14
1	6.14	1		1

8. If the average value of homes in your area has increased over the last 10 years from \$108,000 to \$165,000, what is the average annual rate of increase?

N	i	PV	PMT	FV
10	4.33	-108,000		165,000