Chapter Review Problems

Tip: After doing a problem in "begin" mode, don't forget to switch your calculator back to "end" mode.

Unit IO.I: Finding future value

1. Tammy Brown is 31 and deposits $\$ 2,000$ at the end of each year into an individual retirement account (IRA). If the account earns 11% compounded annually, how much will Tammy have when she retires 34 years later?

N	i	PV	PMT	FV
34	11		$-2,000$	$613,674.87$

2. Jack Green spends $\$ 135$ a month on cigarettes and is considering the advantages of kicking the habit. If Jack just turned 19 and deposits the $\$ 135$ at the end of each month into a savings plan earning 8% compounded monthly, how much will he have in his savings plan at age 70 , after his final deposit?

N	i	PV	PMT	FV
$51 \times 12=612$	$8 \div 12 \approx 0.67$		-135	$1,161,338.43$

3. You deposit $\$ 500$ today into a savings plan and deposit an additional $\$ 100$ each quarter (starting in 3 months) for 35 years. If you earn 5.5% compounded quarterly, what will your balance be in 35 years?

N	i	PV	PMT	FV
$35 \times 4=140$	$5.5 \div 4 \approx 1.38$	-500	-100	$45,316.26$

4. 170 years ago, your great-great-great-great grandfather lost $\$ 42$ playing poker at a fur-trading post in Wyoming. If he had not been tempted to get into the poker game and instead had deposited the $\$ 42$ in a savings account earning 4% compounded annually, how much would be in the account today?

N	i	PV	PMT	FV
170	4	-42		$33,030.64$

5. Calculate the account balance for $\$ 500$ left on deposit for 267 days earning 5.25% compounded daily.

N	i	PV	PMT	FV
267	$5.25 \div 365 \approx 0.01$	-500		519.57

6. Jed Redmond just turned 22. He decides to empty the change out of his pocket each day—averaging a dollar a day—and set it aside. Then, at the end of each year, Jed will deposit the money in a savings plan earning 7.75% compounded annually. How much will Jed have when he turns 65 , after his final deposit?

N	i	PV	PMT	FV
43	7.75		-365	$111,953.59$

7. The average growth rate for stocks over the last 75 years is reported to be about 11%, compounded annually. If your grandmother had invested $\$ 500$ in the stock market 75 years ago and received the 11% return, what would her investment be worth today?

N	i	PV	PMT	FV
75	11	-500		$1,253,699.39$

8. Refer to a business magazine article, shown to the right. Assuming that interest is compounded monthly and deposits are made at the end of each month, calculate the precise savings plan balance you will have at ages 35, 45, 55, and 65.

N	i	PV	PMT	FV
$10 \times 12=120$	$7 \div 12 \approx 0.58$		-100	$17,308.48$
$20 \times 12=240$	\uparrow		\uparrow	$52,092.67$
$30 \times 12=360$	\uparrow		\uparrow	$121,997.10$
$40 \times 12=480$	\uparrow		\uparrow	$262,481.34$

GET RICH SLOW SCHEME

Unit I0.2 Sinking funds

Problems 9-11 deal with a promise Beth received from her Uncle Ted. He promises to give her $\$ 50,000$ on her 30th birthday, $6 \frac{1}{2}$ years from now. Uncle Ted can earn 8.5\% compounded quarterly on his money.
9. What amount could Uncle Ted deposit today in a savings plan so that the plan would have the required $\$ 50,000$ in $6 \frac{1}{2}$ years?

N	i	PV	PMT	FV
$6.5 \times 4=26$	$8.5 \div 4 \approx 2.13$	$-28,942.51$		50,000

10. If, instead, Uncle Ted elects to make quarterly deposits into the plan (starting in 3 months), what is the required quarterly deposit?

N	i	PV	PMT	FV
\uparrow	\uparrow	0	$-1,460.36$	\uparrow

11. If, instead, Uncle Ted elects to deposit $\$ 10,000$ today, what additional quarterly deposit is required?

N	i	PV	PMT	FV
\uparrow	\uparrow	$-10,000$	-955.78	\uparrow

12. Kristi just turned 28 and can save $\$ 180$ per month, starting in 1 month. If Kristi can earn 8% compounded monthly, what age will she be when she accumulates $\$ 1,000,000$?

N	i	PV	PMT	FV
547.60 months	$8 \div 12 \approx 0.67$		-180	$1,000,000$

Kristi's age now
(+45.63
Kristi's age when she has $\$ 1,000,000 \quad 73.63$ (73 years old)
28.00
13. While your dentist is filling a cavity in one of your teeth, he is talking with his dental assistant about the new dental equipment he wants to buy in $2 \frac{1}{2}$ years for $\$ 35,000$. He wonders how much he will need to set aside at the end of each month to accumulate the $\$ 35,000$. You get his attention and tell him that if he will quit drilling for a minute you will calculate the amount for him. What is the amount, assuming he can earn 11% compounded monthly?

N	i	PV	PMT	FV
$2.5 \times 12=30$	$11 \div 12 \approx 0.92$		$-1,018.90$	35,000

14. You want to start a retail clothing business and estimate it will take $\$ 15,000$ to get started. If you can save $\$ 250$ each month, starting today, and your savings will earn 8% compounded monthly, in how many months can you start your business?

N	i	PV	PMT	FV
50.35 months	$8 \div 12 \approx 0.67$		-250 Begin*	15,000

*Note: Don't forget to put back in "end" mode.
For Problems 15-17, help an auto manufacturer make some calculations on some bonds. The company issues $\$ 86,500,000$ of 10.5% 20 -year bonds to upgrade its assembly line. Terms of the bond require annual interest payments to bondholders plus annual deposits to a sinking fund for retirement of the bonds when they mature.
15. How much interest must the corporation pay to the bondholders each year?

$$
I=P R T=\$ 86,500,000 \times 10.5 \% \times 1=\$ 9,082,500
$$

16. Assuming the corporation can earn 11.5% compounded annually on its sinking fund, how much must it deposit into the fund at the end of each year?

N	i	PV	PMT	FV
20	11.5		$-1,271,963.81$	$86,500,000$

17. What is the total amount the corporation needs each year to meet its obligations on the bonds?

Annual interest payments	$\$ 9,082,500.00$
Annual sinking fund deposit	$+1,271,963.81$
Total needed each year	$\$ 10,354,463.81$

Unit I0.3 Annuities

For Problems 18-21, pretend you receive an inheritance of \$500,000 and deposit it in a savings account that earns 6.75% compounded monthly.
18. If you want to live off the interest without withdrawing any of the principal, what amount can you withdraw each month?

$$
I=P R T=\$ 500,000 \times 6.75 \% \times \frac{1}{12}=\$ 2,812.50
$$

19. If you withdraw $\$ 2,500$ at the end of each month, what will the balance be in 25 years?

N	i	PV	PMT	FV
$25 \times 12=300$	$6.75 \div 12 \approx 0.56$	$-500,000$	2,500	$743,358.22$

20. If you withdraw $\$ 3,500$ at the end of each month, how long before the balance is exhausted?

N	i	PV	PMT	FV
$290.14 \div 12$	\uparrow	\uparrow	3,500	0
24.18 yrs	\uparrow		0	

21. If you want the plan to last 35 years, how much can you withdraw at the end of each month?

N	i	PV	PMT	FV
$35 \times 12=420$	\uparrow	\uparrow	$3,107.08$	0

22. A wealthy citizen sets up a trust for scholarships at a local community college. The gift is for $\$ 1,000,000$, and the money is distributed at the beginning of each year over the next 200 years. If the trust earns 7.5% compounded annually, how much is available for scholarships each year?

N	i	PV	PMT	FV
200	7.5	$-1,000,000$	$69,767.48$ Begin*	0

[^0]
Unit I0.4 Rate considerations

23. Refer to the advertisement shown below. Confirm the annual yield (APY). Use an arbitrary $\$ 100$ deposit.

24. Refer to the advertisement shown below. Confirm the annual yield (APY).

25.

N	i	PV	PMT	FV
2	$5.75 \div 2 \approx 2.88$	-100		105.83
1	5.83	\uparrow		\uparrow

24.

N	i	PV	PMT	FV
365	$4.55 \div 365 \approx 0.01$	-100		104.65
1	4.65	\uparrow		\uparrow

25. One way of measuring inflation is through the use of the consumer price index (CPI), which tracks the cost of a "basket of goods" (food, housing, medical care, fuel, etc.). The base year of the current index is 1983, when the basket of goods cost $\$ 100$. The CPI was 9.9 in 1913 (meaning the same basket of goods cost $\$ 9.90$), 29.6 in 1960, and 170.8 in the year 2000. Calculate the average annual rate of inflation for the following periods: (a) 1913 to 1960, (b) 1960 to 1983, (c) 1983 to 2000, and (d) 1913 to 2000.

N	i	PV	PMT	FV
47	2.36	-9.9		29.6
23	5.44	-29.6		100
17	3.20	-100		170.8
87	3.33	-9.9		\uparrow

26. Your annual salary 12 years ago was $\$ 15,600$; it is now $\$ 23,000$. If the inflation rate over the last 12 years has averaged 3.5% per year, has your salary kept up with inflation?

N	i	PV	PMT	FV
12	3.29	$-15,600$		23,000

No; your salary has increased 3.29% per year, which is less than the average annual inflation rate.
27. Tuition at a local college is currently $\$ 2,550$ per year. You want your newborn daughter to attend when she turns 18 . If tuition rates are expected to increase at an annual rate of 4.5%, what will the annual tuition be at the college 18 years from now?

N	i	PV	PMT	FV
18	4.5	$-2,550$		$5,631.62$

Challenge problems

28. The elephant population in a certain region is decreasing 5% per year. If there are currently 3,200 elephants in the region, what is the projected elephant population 20 years from now?

N	i	PV	PMT	FV
20	-5	$-3,200$		1,147 elephants

29. A few prices for the years 1943 and 2000 are shown. Which item has the greatest average annual rate of increase?

Item	1943	2000
Gallon milk	$\$ 0.62$	$\$ 2.89$
New auto (average)	$\$ 900$	$\$ 17,500$
New home	$\$ 3,600$	$\$ 142,000$
Household income	$\$ 2,041$	$\$ 35,500$

N	i	PV	PMT	FV
57	2.74	-0.62		2.89
\uparrow	5.34	-900		17,500
\uparrow	6.66	$-3,600$		142,000
\uparrow	5.14	$-2,041$		35,500

For Problems 30-33, consider Social Security and Medicare payroll deductions. As of the writing of this text, the federal government requires employees to pay tax of 7.65% on the first $\$ 80,400$ earned each year plus 1.45% of the remainder. Employers must contribute a matching amount. Assume that an employee earns $\$ 45,000$ each year during a 40-year working career.
30. Based on these rates, what is the amount withheld from the employee's pay each year?

$$
\$ 45,000 \times 7.65 \%=\$ 3,442.50
$$

31. What is the total amount contributed by the employee and employer to the fund each year?
$\$ 3,442.50$ (employee share) $+\$ 3,442.50$ (employer share) $=\$ 6,885.00$
32. The money is remitted to the government quarterly. What is the quarterly deposit? $\$ 6,885 \div 4=\$ 1,721.25$
33. Assuming that the deposits were made to a savings plan at the end of each quarter (instead of with the IRS), earning 7% compounded quarterly, how much would the employee have in the savings plan at the end of a 40 -year working career?

N	i	PV	PMT	FV
$40 \times 4=160$	$7 \div 4=1.75$		$-1,721.25$	$1,480,390.69$

34. You win a contest in which you have the choice of receiving $\$ 25,000$ today or receiving $\$ 3,500$ a year (starting today) for 10 years. If you can earn 7.5% compounded annually, which choice should you make, and why?

N	i	PV	PMT	FV
10	7.5	$-25,000$	0	$51,525.79$
\uparrow	\uparrow	0	$-3,500$ Begin*	$53,228.42$

*Note: Don't forget to put back in "end" mode.
Take $\$ 3,500$ per year. $\$ 25,000$ today would grow to $\$ 51,525.79$ in 10 years, while $\$ 3,500$ per year (starting today) would grow to $\$ 53,228.42$.
35. At the end of each month for 3 years, you deposit $\$ 200$ into a savings plan. You then make no further deposits but leave the money in the plan for another 5 years. If the plan earns 8.5% compounded monthly, what will the balance be at the end of the 8 -year period?

N	i	PV	PMT	FV
$3 \times 12=36$	$8.5 \div 12 \approx 0.71$		-200	$8,168.53$
$5 \times 12=60$	\uparrow	$-8,168.53$	0	$12,475.80$

For Problems 36 and 37, consider a savings plan for your retirement. You can earn 6.5% compounded monthly.
36. You plan on retiring in exactly 32 years and want to be able to withdraw $\$ 2,500$ at the end of each month during 20 years of retirement. What amount must be on deposit at the beginning of the 20-year retirement period in order to withdraw $\$ 2,500$ each month for 20 years?

N	i	PV	PMT	FV
$20 \times 12=240$	$6.5 \div 12 \approx 0.54$	$-335,312.51$	2,500	0

37. How much must you deposit at the end of each month for the next 32 years to accumulate the required sum of Problem 36?

N	i	PV	PMT	FV
$32 \times 12=384$	\uparrow	0	-260.97	$335,312.51$

38. If gasoline prices have increased over the past 30 years from 25.9 cents per gallon to $\$ 1.599$ per gallon, what is the average annual rate of increase?

N	i	PV	PMT	FV
30	6.26	-0.259^{*}		1.599

* Note: 25.9 cents, written in terms of dollars, is $\$ 0.259$

39. The Dow Jones Industrial Average (DJIA) is an index that monitors changes in the stock market. On April 13, 1920, the DJIA was 104.61; on April 13, 1960, the DJIA was 626.50; and on April 13, 2000, the DJIA was 10,923.55. Calculate the average annual increase in the index from (a) April 13, 1920, to April 13, 1960; (b) April 13, 1960, to April 13, 2000; and (c) April 13, 1920, to April 13, 2000.

N	i	PV	PMT	FV
40	4.58	-104.61		626.50
\uparrow	7.41	-626.50		$10,923.55$
80	5.98	-104.61		\uparrow

40. You are thinking about buying one of two bonds. The first pays 8.35% compounded semiannually; the second pays 8.5% compounded annually. Which provides the greater return?

The second bond pays 8.5% compounded annually, resulting in an APY of the same 8.5%. Let's find the APY for the first bond, using an arbitrary $\$ 100$ investment:

N	i	PV	PMT	FV
2	$8.35 \div 2 \approx 4.18$	-100		108.52
1	8.52	\uparrow		\uparrow

The APY for the first bond is 8.52%, greater than the 8.5% provided by the second bond.
41. Refer to the news article below. What interest rate must the annuity earn? Assume that the $\$ 25,000$ payments are received at the beginning of each year.

Murray's 500th Nets \$500,000

THE ASSOCIATED PRESS

BALTIMORE - Nearly a week of hype ended with the sale of a scuffedup baseball. But this wasn't any baseball. Hit by Baltimore Orioles star Eddie Murray for his 500th home run, it sold for $\$ 500,000$.
Dan Jones, a salesman from
Towson, got the ball on Sept. 6, when Murray joined Willie Mays and

Hank Aaron as the only players to reach 3,000 hits and 500 home runs. Jones will receive $\$ 25,000$ a year for 20 years, totaling $\$ 500,000$. But the buyer, Michael Lasky, is paying only $\$ 280,000$ in the deal. Laski is putting the $\$ 280,000$ in an annuity. With interest, Jones is able to receive the total of $\$ 500,000$.

Roberto Borea/The Associated Press Michael Lasky shows off the $\$ 500,000$ baseball.

N	i	PV	PMT	FV
20	7.18	$-280,000$	25,000 Begin $*$	

*Note: Don't forget to put back in "end" mode.
42. Refer to the advertisement. Confirm the APY. Use an initial $\$ 500$ deposit.

OUR THREE-YEAR CD* Is on the Up and Up

6.0%	7.00/O	8.0%
RATEE	RATE	RATE
FIRST YEAR	SECOND YEAR	THIRD YEAR

7.19% anNUAL PERCENTAGE YIELD
*Based on quarterly compounding. Substantial penalty for early withdrawal. $\$ 500$ minimum balance.

N	i	PV	PMT	FV
4	$6 \div 4=1.50$	-500		530.68
4	$7 \div 4=1.75$	-530.68		568.82^{*}
4	$8 \div 4=2$	-568.82		615.70
$3 \times 1=3$	7.19	-500		\uparrow

*Note: Assume that the unrounded year 1 ending balance (530.6817753 internal value) is transferred into the PV register as a negative value; if the rounded value (530.68) is entered in the PV register, the ending balance is slightly different (568.81). The same procedure should be used for year 3 (transfer the year 2 ending balance into PV as a negative value for year 3).

Practice Test

1. You find an old savings account passbook in your attic. The last balance shown is $\$ 576.82$ as of 55 years ago. Calculate the current balance if the bank has been paying 4.75% compounded annually.

N	i	PV	PMT	FV
55	4.75	-576.82^{*}		$7,404.78$

*Note: We can enter the PV value as positive or negative. In this solution, the amount (\$576.82) is thought of as being deposited and, therefore, is entered as a negative value.
2. You deposit $\$ 200$ today into a savings plan and deposit an additional $\$ 25$ each month (starting in 1 month) for 22 years. If you earn 6.5% compounded monthly, what will your balance be in 22 years?

N	i	PV	PMT	FV
$22 \times 12=264$	$6.5 \div 12 \approx 0.54$	-200	-25	$15,429.16$

3. You want to accumulate $\$ 100,000$ in 18 years for your child's education, and you can earn 7.75% compounded monthly. What amount must you deposit each month if the first of your 216 deposits is made today?

N	i	PV	PMT	FV
$18 \times 12=216$	$7.75 \div 12 \approx 0.65$		-212.70 Begin	100,000

4. Ben just turned 22. He wants to accumulate $\$ 1,000,000$. Ben starts a savings plan by depositing $\$ 2,500$. He then makes additional deposits of $\$ 400$ at the end of each quarter. If Ben's savings plan earns interest at 8% compounded quarterly, what age will Ben be when he has accumulated the $\$ 1,000,000$?

N	i	PV	PMT	FV
$\mathbf{1 9 2 . 6 0}$ quarters	$8 \div 4=2$	$-2,500$	-400	$1,000,000$

Ben's age now	22.00	
Years left to accumulate $\$ 1,000,000: 192.60$ quarters $\div 4$	$+\underline{48.15}$	
Ben's age when he has $\$ 1,000,000$	70.15	(70 years old)

5. Your uncle dies and your 62-year old aunt receives $\$ 250,000$ life insurance proceeds. She needs monthly income and expects to live until she is 90 years old. If she invests the insurance money, earning 7.75% compounded monthly, how much can she withdraw at the end of each month for the next 28 years?

N	i	PV	PMT	FV
$28 \times 12=336$	$7.75 \div 12 \approx 0.65$	$-250,000$	$1,824.34$	0

6. Mitch Swanson wins $\$ 100,000$ on a game show. If he deposits the money in a savings plan earning 7.5% compounded monthly and makes withdrawals of $\$ 1,000$ at the end of each month, how long can Mitch make withdrawals until the plan is exhausted?

N	i	PV	PMT	FV
157.42 months	$7.5 \div 12 \approx 0.63$	$-100,000$	1,000	0

7. What is the APY (to the nearest hundredth of a percent) for 6% compounded quarterly?

N	i	PV	PMT	FV
4	$6 \div 4=1.5$	-100		106.14
1	6.14	\uparrow		\uparrow

8. If the average value of homes in your area has increased over the last 10 years from $\$ 108,000$ to $\$ 165,000$, what is the average annual rate of increase?

N	i	PV	PMT	FV
10	4.33	$-108,000$		165,000

[^0]: *Note: Don't forget to put back in "end" mode

